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Abstract

We describe DooFuS, a peer-to-peer distributed file
system intended for small networks of users with
limited space who want control over probabilistic
data availability at the file level. Distributed file sys-
tems render transparent a network of nodes collabo-
rating to maintain data consistency and redundancy
to the user who interacts with it as one would a lo-
cal file system. Peer-to-peer networks use complete
functional homogeneity to create highly resilient
networks with little established infrastructure. We
describe the underlying modules and logic that are
responsible for DooFuS’ functionality and analyze
the application’s performance.

1 Introduction and Background

File systems provide an interface for the user to
work with memory at the file level. They remove
the necessity of managing data consistency, raw
memory addresses, or disk failures. They generally
provide utilities for viewing metadata about files,
such as when they were created, by whom, and how
large they are.

A distributed file system exposes the function-
ality of a traditional file system while abstracting
away the underlying distributed nature of the disk
storage and all complications that come with it.
This is an example of the canonical transparency
achieved by well-designed distributed systems.

Peer-to-peer networks function with complete
functional homogeneity amongst nodes: any node

can do all tasks of any other node. Functional
homogeneity makes for a very resilient network:
since there is no hierarchy, no nodes have raised
importance or become points of failure. Peer-to-
peer networks have been used to much success
in many distributed platforms that require a high
level of failure-resistance even when lacking the
infrastructure for traditional fail-safe mechanisms.

DooFuS is a peer-to-peer distributed file sys-
tem designed for a specific use case: small
networks of users who want to store and share files
of customizable probabilistic availability. This is
useful because it lets small groups or individuals
securely and easily gain fault tolerance against
file loss using just their own computers (and so
without forfeiting any privacy). Section 2 discusses
the system design and implementation. Section 3
discusses the evaluation of the system. Section 4
reviews related works and future work for DooFuS.

2 Design Overview

2.1 Network

As DooFuS was designed with small groups in
mind, its network structure differs from the majority
of peer-to-peer systems. The network in DooFuS
is fully connected, with every node connected to
every other node. In most peer-to-peer networks,
a single node will only know about a couple of
other nodes (as it would be unreasonable to store
information about potentially millions of nodes),
which means messages have to spend their time
propagating through the network towards their



target. In DooFuS however, the fully connected
network lets the system be as fast as possible.
Every request or message can be directly sent to its
destination. The trade-off is that the system makes
heavy use of the network, but since it is intended
for small groups of users this shouldn’t cause any
network overload.

This fully connected nature also means that
new information immediately reaches the entirety
of the online network, as information updates can
be broadcast to every node at once. This removes
much of the difficulty and overhead of having to
deal with the notion of ’eventual consistency’.
Since a node is synced upon joining a network, an
entire online network should always be internally
consistent (whether or not that consistency is
correct is another matter, but not one that is the
network’s problem). This speed also comes into
play with the heartbeats that nodes periodically
send out to all other nodes, as it means that news
of a node going offline gets to everyone at about
the same time. Once again, this comes at the price
of heavy network usage, but we find that to be an
acceptable trade-off for speed.

A user’s identity on the network is determined
by an ’id’, which can be any string. To connect
to a DooFuS network, users reach out to a host
that they believe is on the network and send them
their id. To be able to connect, or get any type
of response, that id must have been manually
verified beforehand by someone on the network. So
without valid identification, there is no way to con-
nect to a DooFuS node (or even verify that it is one).

In summary, the network design for DooFuS
is fully connected and resource intensive. This
allows us to achieve the high performance we think
is most important for such a small group shared file
system.

2.2 File System

The file system is broken into two main components
on each node. The file system manager synchro-
nizes with other nodes’ managers through the net-
work module and responds to user-triggered com-

mands. The file system backend handles the actual
representation of the file system metadata and writ-
ing this information to disk.

2.2.1 File System Backend

In order to keep track of replicas of all files, meta-
data is collected on uploaded files and stored as a
json file:

• The filename identifies the file

• The uploader’s ID is stored for ownership
(associated with possible functionality exten-
sions)

• A list of replicas stores which hosts (by ID)
hold copies of the file

All file json objects are stored in one list in a json
file. This file is accessed by the File System Back-
end object. This object maintains a copy of this
json structure in soft state. It exposes this object for
file addition, file deletion, and replica addition. It
also directly exposes deep copies of the underlying
structure so the File System Manager can perform
more complex tasks that require knowledge of the
file list or a file’s replica list. The File System Back-
end exposes deep copies as opposed to references
to the objects due to concurrency issues: files may
be added or deleted in between calls that depend on
length or membership checks.

All File System Backend methods that edit
the underlying json object share a common lock
that are acquired at the start of the method and
released before returning control. This is to prevent
simultaneous editing of the json object which could
result in undefined behavior.

2.2.2 File System Manager

The Backend is not exposed to other application
components by design, which instead work through
the File System Manager. The API exposed by
the manager is restricted to application-relevant
methods.

Along with this restriction, the File System
Manager provides the higher functionality of the
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file system. This includes local management of
file upload and file download, acknowledging new
replicas, displaying files to the user, and synchro-
nizing data with newcomer’s file systems. As part
of its uploading duties, it handles the replication
logic (see later section for how replication logic is
performed).

The Manager maintains a reference to the net-
work object which is how it initiates many file
system utilities that require the cooperation of other
nodes.

2.3 Replication Logic

DooFuS is designed so that the system will auto-
matically assign priorities to files (based on how
users have marked it). This priority correlates with
how likely it will be that the file will be accessible
to any user who may want to download it. The
higher priority a file has, the more storage it will
necessitate on DooFuS since more replicas will be
necessary.

To more formally describe the priority-replica
relationship: a general availability function A
informs us of the probability of accessing a file
stored on R replicas out of N nodes total on the
network. A value 0 < p < 1 for an uploaded file is
specified such that DooFuS enforces

A(R,N) > p

by changing how many replicas R must be stored
on the network.

To decide upon an R value, we must deter-
mine the A function. The availability function
A is equivalent to 1 − F , where F (R,N) is the
likelihood that a file is unavailable. F is related
to our failure case, which is the expected failure
conditions of our network. A failure case could
be defined in a number of ways. For example, we
may say that a given node is a unavailable with
probability x, a model used in multiple server
systems [1]. In this case, F does not even depend
on N :

F (R) = xR

Figure 1: Number of replicas necessary to assure
availability of p when any given node is available
with probability 1 − x. Note that the plane in the
foreground of the graph is at R = 1.

p > A(R) = 1− F (R) = 1− xR

Solving for R gives us:

R =

⌈
ln(1− p)

ln(x)

⌉
Another failure case may be that, at any given time,
a random fraction x of all nodes N are in a state of
failure. This is more complicated, as F (and thus A)
is dependent on the total node count:

F (R,N) =

(
N−R
xN−R

)(
N
xN

)
p > A(R,N) = 1− F (R,N) = 1−

(
N−R
xN−R

)(
N
xN

)
Solving for R in this case is non-trivial. Our imple-
mentation handles the simpler failure case.

The file system manager, when uploading a
file, calculates R using the above formula and
then chooses enough nodes so that the network
contains the requisite number of replicas to satisfy
the priority specified by the uploader.

Currently, file priority is known, but not com-
municated to other nodes. Since the failure case
does not depend on node count, only the initial
replica count is important. More replicas do not
need to be added as node count increases, so there
is no reason to track the priority as time goes on, but
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this is a possible extension to be added as outlined
in Future Work.

2.4 Uploading a File

The file system manager handles file uploads.
There are four steps to the upload process: file
input, replica propagation, replica storage and
file and replication data broadcast.

File input and replica propagation
File input is handled by the backend file writer. The
file data is then propagated to nodes on the network
according to our replication logic (Sect. 2.3). Each
replica node is sent a message containing file data
and metadata.

Replica storage
The file system manager of each replica adds
file metadata to the file system backend and
the backend file writer writes file data to disk.
Replicas are treated as dictionary objects and
serialized to json format on disk. Replicas are
stored this way in order to support file slicing
functionality; each dictionary entry is indexed by
the part of the file that the stored data reflects.
The file writer backend keeps replica data in
memory as well as on disk in order to reduce costly
reads and writes to disk, and reads each replica
into memory after the program is quit and reopened.

The backend file writer holds a lock that is
passed to all methods that edit replica json objects.
This is to prevent accessing these methods at
the same time which could result in undefined
modification of the json files.

Data broadcast
After successfully storing file data and metadata,
each replica node propagates metadata to the
network containing their status as a replica of
the file. If nodes don’t know about the file yet,
their file system manager adds the file and replica
metadata to the file system backend. If file upload
information has already been propagated to a node,
then the node’s file system backend simply adds the
new replica to its list.

File metadata is not propagated by the up-
loader unless the uploader is a replica. Instead, it
is propagated only by nodes that have successfully
stored a replica of the file. In this way, the file is not
known by the network until at least one node has
written a replica to disk.

2.5 Downloading a File

Downloading a file is also handled by a node’s file
system manager. There are four steps to the down-
load process: download request propagation, file
input, file propagation and file storage.

Download requests
When a user requests a file download, they must
specify both a file that has online replicas and a
directory to add the file to. If the users node is not
storing part of the requested file, the backend file
writer adds the file to its dictionary and stores the
requested download destination. The file system
manager then iterates through its list of replicas
for the file and chooses which replicas to request
the file from. If the file is replicated on the user’s
node, the backend file writer writes the part of the
file it has. The file system manager then sends a
request to enough other replica nodes to ensure that
it receives all parts of the file. Currently all files are
replicated fully on each nodes, so it chooses one
replica to request the file from.

File input and propagation
Each replica that receives a file request tells its
backend file writer to read in the section of the
file that is requested. While a node is online, this
data is stored in memory, which makes reading
the data much faster than disk storage would. The
node then propagates this data, along with metadata
containing the part of the file being sent, to the node
that sent the request.

File storage
The node that requested a file download receives
all file data and tells its backend file writer to write
the data to disk. The file writer stores this data as
part of the file’s contents temporarily in memory
without writing it to disk as replica data. Once the
file writer has received requests from the manager
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to write all parts of the file to disk and has all file
data stored in its content dictionary, it appends each
file part to the file in order. It write the file to the
destination specified by the user.

2.6 Removing a File

When a user decides to delete a file, the file is first
removed from the user’s local file system metadata.
Then DooFuS checks to see if the local node is
serving as a replica for the file, and deletes the file
itself if it is a replica. Then DooFuS broadcasts
a message to the rest of the network telling the
nodes that the file is being deleted from the file
system. Each node performs the same process as
the original node that issued the delete file request.
The node first removes the file from its file system
metadata before checking to see if it was serving as
a replica for the file and deleting the file itself if so.
Once this process is completed, the file has been
deleted from the file system for all of the nodes
currently connected to the network.

There is one downside to this approach. If
nodes that know about the file are not currently
connected to the network when the file is deleted,
those nodes will not receive the delete file request
and will not delete the file as a result. When
the node rejoins the network, it’s file system
metadata will propagate throughout the rest of the
network. This will essentially re-add the file to
the distributed file system and undo the original
delete file request. This presents an interesting
challenge, but is not one we chose to address in
the scope of our project. We are assuming that our
network is small and fully-connected. Moreover,
we are assuming that all nodes are constantly
online. As a result, we are not going to address this
issue and will instead assume that all nodes that
know about a given file are connected to the net-
work when a delete file request for that file is issued.

This challenge could have been addressed in a
number of ways. The original node that issued
the delete request could have continued trying to
delete the file until it was certain that every node
that had once known about the file had been told
to delete the file. This approach would have been

extremely resource intensive, and it is possible
that the original node would wait indefinitely for
a node to connect to the network. Another, more
reasonable approach to this problem, would be to
implement a blockchain. The blockchain would
serve as a distributed record of all file deletions
(and possibly additions if we chose). As we learned
during some of the final presentations in class,
a blockchain is a means of storing a distributed
record that can be used to maintain consistency
in peer-to-peer networks with regularly entering
and exiting nodes. By using a blockchain to store
all delete requests, we could ensure that nodes
entering the network that had not been informed of
a deleted file would find out immediately once they
joined. This would prevent the situation that we
described earlier when a new node re-adds a deleted
file to our file system. While we did not add this
blockchain functionality, it would be a relatively
simple addition in the future.

3 Evaluation

In order to evaluate the performance of DooFuS,
we ran a couple of tests. The main metric that we
were concerned about was the quickness of the sys-
tem. Users always expect speed from their file sys-
tems. They expect to be able to create new files, find
them, and delete them rapidly. These expectations
do not change when using a distributed file system.
In the interest of transparency, the distributed nature
of a distributed file system should be hidden from
the user. Therefore, the file system should operate
quickly, whether it is distributed or not. DooFuS is
not exempt from these user expectations. As a re-
sult, we also needed to ensure that DooFuS ran at a
speed that was acceptable for use as a file system.

3.1 Speed

When testing speed, we determined that the two
most important features of DooFuS that needed to
execute quickly were uploading and downloading
of files. We chose upload speed because this is how
users will add newly created files to the file system.
If users have to wait for long periods of time when-
ever a new file is created, they will not want to use
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Replicas Upload Speed
2 0.040238
3 0.032153
4 0.030265
5 0.036480

Table 1: Upload Speeds

Figure 2: Upload times for varying levels of nodes

DooFuS. Creating files is a common task in file sys-
tems, so slow execution here will make the entire
system appear slow. Downloading files is important
for similar reasons. Users will download files when
they want to edit or otherwise access the files or
when they want to access files that have been shared
with them by their friends on the network. In either
of these cases, the user will want to be able to open
these files quickly. Ensuring rapid download speeds
will allow them to do so and prevent DooFuS from
appearing slow.

3.1.1 Uploads

We tested how long it took for a file to be up-
loaded and replicated across our network with vary-
ing numbers of replicas. We anticipated the upload
time increasing as we required more replicas be-
cause the file would need to be transferred to more
nodes. However, as Table 1 and Figure 2 illustrate,
this was not the case. This is likely because the ac-
tual time taken to transfer the file over the Internet
eclipsed the time taken by our system. As a result,
this would obscure the running time of our system
as we replicate a file over increasingly many nodes.
Nonetheless, the upload speeds that our system was
able to attain are adequate and will not prevent a
user from adopting DooFuS.

Replicas Download Speed
2 0.013715

Table 2: Download Speeds

3.1.2 Downloads

To test the download speeds of our file, we mea-
sured how long it took to download a single file
from a network with only two replicas. We did
not bother measuring the download times on net-
works with larger replica counts because our sys-
tem currently downloads a file from the first replica
on its replica list. As a result, adding more replicas
would not impact the download speed. The down-
load speed can be seen in Table 2. Clearly, this
speed is also acceptable. A download that only takes
this long will not be noticed by a user. As a re-
sult, the user will find our system to be adequately
fast for downloading files. When considered along-
side our upload speeds, we have found that Doo-
FuS functions fast and has the potential to serve as
a user’s primary file system.

3.2 Consistency

Deciding how to achieve consistency is a key part of
any distributed system, and one we thought about a
lot. For our purposes, we decided that consistency
has two parts: One is that once a file is added to the
network it will never be unintentionally lost or have
incorrect metadata associated with it (as to who is
holding what replicas). We were able to ensure this
property, but have yet to implement the second part
which is that a deleted file stays deleted. This is a
critical flaw as it means that once a single user is
offline during a deletion the system has lost consis-
tency. However we believe there to be a fairly sim-
ple fix, and once we have deletion consistency our
system should be functionally consistent.

4 Discussion

4.1 Related Work

DooFuS is not the first application to store data
on a peer-to-peer network. Chord is a distributed
lookup protocol designed to help efficiently locate
data on a peer-to-peer network. Chord can be used
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to build peer-to-peer distributed hash tables which
would allow a user to store data on a peer-to-peer
network and access that data quickly and efficiently.
Chord seeks to provide efficient lookup of data,
but since we focused on a small, fully connected
network, this was not necessary. DooFuS is able to
locate data far more efficiently than Chord because
it knows where all of the data is stored on the
network. If we wished to expand our network to
the point where it was no longer fully connected,
Chord might be a useful tool to ensure that our
network still located data quickly.

There are also examples of peer-to-peer dis-
tributed file systems. One of these systems is
known as the InterPlanetary File System (IPFS).
IPFS is a peer-to-peer distributed file system that
bills itself as a hypermedia distribution protocol
that could replace HTTP. [2] The idea behind IPFS
is to connect all computers to a shared distributed
file system, which will allow users to access files
hosted in the peer-to-peer network. This is a similar
goal to our system, albeit with much loftier goals
and a larger scope. We do not hope to redesign the
Internet, and our goals are designed to reflect that.
DooFuS has shown promise as a social network (see
our poking functionality for evidence), but it has
been designed and implemented with small-group
peer-to-peer networking in mind. Nonetheless,
IPFS does show the immense potential that peer-
to-peer distributed file systems offer. There are
also other peer-to-peer distributed file systems that
have been developed such as Shark and Black-box,
which focus their efforts on different goals such as
efficient caching and security. [3] [4]

4.2 Future Work/Possible Extensions

File type support
Currently DooFuS provides functionality for text
files. We plan to extend this functionality to include
all file types. Our general system structure allows
for this change. However, there are currently steps
in the upload and download process that require
file data to be decoded to string format. One issue
is that json objects are stored in string format. To
account for this functionality, the file writer must
write each part of binary file data separately from

the json file, which stores only metadata. Also, the
current network message format casts all messages
to string format before encoding and sending data
across the network. This could be changed to
support binary file data by only casting metadata
to string format and sending file data without
decoding it.

File slicing
The backend file writer and the network were
implemented to support dividing files into slices
and sending each slice to a different node as part of
the replica propagation process. We plan to support
file slicing in the future. To implement file slicing,
the file system backend must store additional
replication metadata about which part of the file
is stored on which replica, so that the file system
manager knows which replicas to request which file
parts from. Once nodes know this information, the
rest of the system is already equipped to support
slicing functionality.

Encryption and Digital Identities
To increase the security of DooFuS, we would
like to add encryption at all levels. We would
like to encrypt all data sent across the network, as
well as all data stored in local config files. This
would prevent MitM or network monitoring attacks
from gaining any information about the files or the
users on the network (the first is troubling because
it violates the privacy goal of the system, and
second is troubling as it would give those attackers
enough information to actually join the network
with its current handshake mechanism). One way
to implement this would be with public-private key
encryption, where every user (or more specifically,
each computer) has a ’digital identity’ that is their
public key.

5 Conclusion

5.1 Reflection on the Assignment

We encountered a lot of issues implementing a
peer-to-peer distributed system that would not
have come up if we had used a centralized model.
For example, our system must propagate new
information to all nodes every time a user changes
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the state of the distributed file system. This sets up
problems with synchronicity as well as reliability.
It is difficult to make sure that all peers are working
with the same state.

We also discovered benefits to peer-to-peer
systems. Privacy is a huge benefit over a centralized
model, because when you upload a file to DooFuS
it is split up on the machines of a few trusted users
instead of stored on a company’s servers. Another
benefit is reliability. We don’t have a single point of
failure. Instead, our replication logic ensures that
files are replicated on a number of nodes based on
their priority, which means important files are not
lost if a node goes down or intentionally leaves the
network.
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